Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.
نویسندگان
چکیده
We present coarse-grained molecular dynamics simulations of the epsin N-terminal homology domain interacting with a lipid bilayer and demonstrate a rigorous theoretical formalism and analysis method for computing the induced curvature field in varying concentrations of the protein in the dilute limit. Our theory is based on the description of the height-height undulation spectrum in the presence of a curvature field. We formulated an objective function to compare the acquired undulation spectrum from the simulations to that of the theory. We recover the curvature field parameters by minimizing the objective function even in the limit where the protein-induced membrane curvature is of the same order as the amplitude due to thermal undulations. The coupling between curvature and undulations leads to significant predictions: (i) Under dilute conditions, the proteins can sense a site of spontaneous curvature at distances much larger than their size; (ii) as the density of proteins increases the coupling focuses and stabilizes the curvature field to the site of the proteins; and (iii) the mapping of the protein localization and the induction of a stable curvature is a cooperative process that can be described through a Hill function.
منابع مشابه
Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes
We have previously proposed the hypothesis that asymmetric membranes behave like bilayer couples: the two layers of the bilayer membrane can respond differently to a particular perturbation. Such a perturbation, for example, can result in the expansion of one layer relative to the other, thereby producing a curvature of that membrane. In experiments with erythrocytes and lymphocytes, we now dem...
متن کاملDefining the free-energy landscape of curvature-inducing proteins on membrane bilayers.
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce cur...
متن کاملShape Deformations of Multi-Component Vesicles
Deformations of cell membranes, such as fusion, adhesion, budding, and pore formation, play important roles in the maintenance of living cell systems. In cell systems, the membrane deformations are managed by complex interplays between membrane proteins and lipids. It is hypothesized that one role of the membrane proteins is to introduce a local spontaneous curvature by interacting with the mem...
متن کاملCurvature instability in membranes
2014 A simple, thermodynamical model was proposed some time ago [1, 2] to describe the physical properties of various systems for which the curvature elastic energy plays an important role. The basis of this model is provided by the notions of effective rigidity and spontaneous curvature. Here we consider the case of bilayer membranes and generalize the model for situations where small adsorbed...
متن کاملAnisotropic Membrane Curvature Sensing by Amphipathic Peptides.
Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 35 شماره
صفحات -
تاریخ انتشار 2016